CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact

نویسندگان

  • Paolo Miceli
  • Samir Bensaid
  • Nunzio Russo
  • Debora Fino
چکیده

AS MORPHOLOGY PLAYS A RELEVANT ROLE IN SOLID/SOLID CATALYSIS, WHERE THE NUMBER OF CONTACT POINTS IS A CRITICAL FEATURE IN THIS KIND OF REACTION, THREE DIFFERENT CERIA MORPHOLOGIES HAVE BEEN INVESTIGATED IN THIS WORK AS SOOT OXIDATION CATALYSTS: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m(2)/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m(2)/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m(2)/g) and a high availability of contact points. A high microporous volume of 0.03 cm(3)/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T 10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soot Combustion over Nanostructured Ceria with Different Morphologies

In this study, nano-structure ceria with three different morphologies (nanorod, nanoparticle and flake) have been prepared by hydrothermal and solvothermal methods. The ceria samples were deeply characterized by XRD, SEM, TEM, H2-TPR, XPS and in-situ DRIFTS, and tested for soot combustion in absence/presence NO atmospheres under loose and tight contact conditions. The prepared ceria samples exh...

متن کامل

BaKCo/CeO2 catalysts for diesel soot and NOx abatement

Introduction Soot particles and NOx are the main pollutants from diesel engines. Good alternatives to abate these contaminants are the use of catalytic filters, which burn the soot particles, and NOx traps which adsorb the NOx during normal operation and released them during reduction cycles [1]. We recently studied BaK/CeO2 catalysts for this application[2]. Barium plays the role of NOx adsorb...

متن کامل

Nanostructured Ceria-Based Materials: Effect of the Hydrothermal Synthesis Conditions on the Structural Properties and Catalytic Activity

In this work, several nanostructured ceria catalysts were prepared by means of a hydrothermal procedure, in which the synthesis conditions (i.e., temperature and pH values) were varied. CeO2 samples of different shapes and structural properties were obtained, namely cubes, rods, cube and nanorod mixtures, and other polyhedra. The prepared materials were tested using four probe catalytic reactio...

متن کامل

Catalytic evaluation of promoted CeO2-ZrO2 by transition, alkali, and alkaline-earth metal oxides for diesel soot oxidation.

Series of mixed metal oxides were synthesized by gel-combustion method and their catalytic activities for soot oxidation were investigated. The catalysts were M-Ce-Zr (M = Mn, Cu, Fe, K, Ba, Sr), and xK-20Mn-Ce-Zr (x = 0, 5, 10, 20), they were characterized by XRD, SEM, TPR and BET surface area techniques. The results of soot temperature programmed oxidation (TPO) in an O2 oxidizing atmosphere ...

متن کامل

Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode.

Crossed Fe2O3 nanosheets supported cobalt oxide nanoparticles on three-dimensionally macroporous nickel foam substrate (xCo/Fe-NF) was designed and successfully prepared through a facile hydrothermal and impregnation route. These catalysts showed high catalytic soot combustion activities under self-capture contact mode. The three-dimensional macroporous structures of Ni foam and the crossed Fe2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014